Augmented block splitting preconditioner for singular saddle point problems
نویسندگان
چکیده
منابع مشابه
A Parameterized Splitting Preconditioner for Generalized Saddle Point Problems
By using Sherman-Morrison-Woodbury formula, we introduce a preconditioner based on parameterized splitting idea for generalized saddle point problems which may be singular and nonsymmetric. By analyzing the eigenvalues of the preconditioned matrix, we find that when α is big enough, it has an eigenvalue at 1 with multiplicity at least n, and the remaining eigenvalues are all located in a unit c...
متن کاملOn the generalized shift-splitting preconditioner for saddle point problems
In this paper, the generalized shift-splitting preconditioner is implemented for saddle point problems with symmetric positive definite (1,1)-block and symmetric positive semidefinite (2,2)-block. The proposed preconditioner is extracted form a stationary iterative method which is unconditionally convergent. Moreover, a relaxed version of the proposed preconditioner is presented and some proper...
متن کاملA BDDC Preconditioner for Saddle Point Problems
The purpose of this paper is to extend the BDDC (balancing domain decomposition by constraints) algorithm to saddle point problems that arise when mixed finite element methods are used to approximate the system of incompressible Stokes equations. The BDDC algorithms are defined in terms of a set of primal continuity constraints, which are enforced across the interface between the subdomains, an...
متن کاملA Preconditioner for Generalized Saddle Point Problems
In this paper we consider the solution of linear systems of saddle point type by preconditioned Krylov subspace methods. A preconditioning strategy based on the symmetric/ skew-symmetric splitting of the coefficient matrix is proposed, and some useful properties of the preconditioned matrix are established. The potential of this approach is illustrated by numerical experiments with matrices fro...
متن کاملSpectral Properties of the Hermitian and Skew-Hermitian Splitting Preconditioner for Saddle Point Problems
In this paper we derive bounds on the eigenvalues of the preconditioned matrix that arises in the solution of saddle point problems when the Hermitian and skew-Hermitian splitting preconditioner is employed. We also give sufficient conditions for the eigenvalues to be real. A few numerical experiments are used to illustrate the quality of the bounds.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 2016
ISSN: 0893-9659
DOI: 10.1016/j.aml.2015.11.015